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We derive a model of a neuron’s interspike interval probability density
through analysis of the first passage problem. The fit of our expression to
retinal ganglion cell laboratory data extracts three physiologically rele-
vant parameters, with which our model yields input-output features that
conform to laboratory results. Preliminary analysis suggests that under
common circumstances, local circuitry readjusts these parameters with
changes in firing rate and so endeavors to faithfully replicate an input
signal. Further results suggest that the so-called principle of sloppy work-
manship also plays a role in evolution’s choice of these parameters.

1 Introduction

The pattern of electrical discharge event times, recorded from a neuron by
a microelectrode in a vertebrate’s central nevous system, largely depends
on three macroscale parameters: local synaptic input current s, in response
to signals from other neurons, the transmembrane ohmic rate constant γ ,
proportional to transmembrane conductance, and the intracellular level of
stochastic voltage noise, which may be expressed as a diffusion coefficient.
Here we develop an expression for a neuron’s interspike-interval proba-
bility density distribution in terms of these three variables. Our procedure
assigns to the recorded neuron a simplified dynamical model, whose input-
output dynamics, in some studied cases, conforms well with laboratory
results.

We derive a general class of interspike-interval probability distributions
based on the three parameters. The best fit of laboratory data within this
class furnishes an estimated input current, membrane constant, and level
of stochastic activity for the neuron in question.

We have made a natural extension of this methodology to a neu-
ron driven by a naturalistic time-varying stimulus that responds over a
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substantial range of firing rates. The manner in which the parameters are
seen to change across rates leads to two tentative observations. First, our
measured neuron belongs to a subset of design possibilities distinguished
by the property that a population of such neurons has a time-dependent fir-
ing rate output that, over a considerable dynamic range, is a faithful copy of
their synaptic current input. Second, our neuron’s design is robust against
substantial construction errors and thus conforms to the so-called principle
of sloppy workmanship.

2 Formulation

The five layers of the retina, one of which is the layer of retinal ganglion
cells, can process image information in as little as 15 msec (Kaplan & Be-
nardete, 2001; Maunsell et al., 1999). Compared with interspike times, this
provides compelling evidence that synaptic dynamics is fast compared to
membrane potential encoding, and we consider a model that depends on
only the membrane potential. This was also the case in the early studies by
Stein (1965) and Wilbur & Rinzel (1982) that modeled encoding neurons by
membrane voltage jumps.

The membrane potential, V, can be made dimensionless by the substi-
tution x = (V − Vr )/(Vt − Vr ), where Vr and Vt are the dimensional resting
and threshold potentials, so that x ≤ 1, where x = 0 is the resting potential
and x = 1 is the voltage threshold for firing. Thus, we consider a probability
density, ρ(x, t), for the membrane potential x at time t. In general, the time
course of ρ is determined by a continuity equation,

∂

∂t
ρ(x, t) = − ∂

∂x
J [ρ], (2.1)

where J , the probability flux, is a linear functional of ρ that depends on
inputs and defines the dynamics of the encoding neuron (Stein, 1965; Wilbur
& Rinzel, 1982, 1983; Abbott & van Vreeswijk, 1993; Knight, Manin, &
Sirovich, 1996; Knight, 2000; Omurtag, Knight, & Sirovich, 2000; Nykamp
& Tranchina, 2000). The distribution of interspike intervals follows from the
first passage problem, in which

ρ(x, t = 0) = δ(x) (2.2)

and boundary conditions

ρ(1, t) = 0 = ρ(−∞, t), (2.3)

where the first is the absorbing boundary condition at the firing threshold.
The evolution of the distribution ρ(x, t) over voltage is governed by the
form of J in equation 2.1 and by equation 2.3. In instances of interest, its
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evolution is dominated by drift toward higher voltage, and back diffusion is
slight. This serves as a basis for the convenient assumption that x ∈ (−∞, 1),
which we adopt.

The structure of equations 2.1 to 2.3 above implies that while the occur-
rence time of a given spike clearly depends on that of its predecessor, it is
independent of all earlier spiking history. Technically we are dealing with
a renewal process. Troy and Robson (1992) present data to show that this is
a reasonable approximation for retinal ganglion cells.

Following a standard argument, the probability that no spike has oc-
curred and the neuron still lies in the interval (−∞, 1) at time t is given by

∫ 1

−∞
ρ(x, t) dx = 1 − P(t), (2.4)

and thus P(t) is the probability of escape in the time t. On differentiating
this expression with respect to time, from equation 2.1, we can perform the
integral and obtain the rate of probability escape,

P(t) = d P
dt

= Jo = J [ρ]
∣∣
x=1, (2.5)

which is the interspike interval probability distribution. It is immediate
from equation 2.2 that

∫ ∞

0
P(t) dt = 1. (2.6)

The gold standard for describing neuronal firing is the Hodgkin-Huxley
system, but the earlier phenomenological leaky-integrate-and fire model

dx
dt

= −γ x + s, (2.7)

with firing threshold x = 1 and resting state x = 0, has proven a trustworthy
approximation when the input timescale is large compared to the duration
of the action potential (Knight, 1972; Keener & Sneyd, 1998; Dayan & Abbott,
2001; Carrillo & Hoppensteadt, 2010). Equation 2.7 models the activity of
the membrane by an RC circuit where γ represents leakage conductance
and s is the input current.

The model just defined is a greatly simplified representation of the actual
physical mechanisms that underlie the generation of interspike intervals in
a real retinal ganglion cell. Nonetheless, neurons respond to one another
only through the timing of the spikes that they receive. We will see that this
compact model succeeds in describing a retinal ganglion cell’s measured
interspike interval statistics.
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Because of our scaling to dimensionless voltage in equation 2.7, s, like γ ,
carries the physical dimension of (time)−1 or rate. We note that if s is constant
and s < γ , then equation 2.7 has an equilibrium solution

xe = s/γ = ŝ ; (2.8)

otherwise equation 2.7, which is explicitly integrable, leads to periodic fir-
ing. The dimensionless ratio ŝ plays a natural role in the theoretical analysis
below.

A natural dimensionless rescaling of time,

τ = γ t, (2.9)

brings equation 2.7 to the convenient one-parameter form

dx
dτ

= −x + ŝ, (2.10)

which, for ŝ < 1, gives a voltage x(τ ) that relaxes at unit exponential rate
from x(0) = 0 to the equilibrium equation 2.8:

x(τ ) = ŝ(1 − exp(−τ )). (2.11)

A model of a neuron with noise is obtained by augmenting the causal
current s in equation 2.7 with stochastic fluctuations. This situation may
be addressed by considering an ensemble of neurons, and from this the
probability density ρ(x, t) over their voltages x, as it evolves in time. For
fluctuations that are frequent, small, and brief, several forms of argument
(Gardiner, 2009; also see Knight et al., 1996) show that equation 2.7 leads to
a diffusion equation for ρ(x, t),

∂ρ

∂t
= ∂

∂x

[
(γ x − s)ρ + D

∂ρ

∂x

]
, (2.12)

with initial condition 2.2 and boundary conditions 2.3.
The diffusion coefficient D, which incorporates stochastic effects, here

carries the physical dimension of rate. The advective first term of equation
2.12, inherited from equation 2.7, near x = 0 indicates flow to the right,
while the diffusive term produces a dispersion of the δ-function as it is
transported.

Equation 2.12, termed a Fokker-Planck equation, and more particularly
the Ornstein-Uhlenbeck equation, was explored by Smoluchowski and
Schrödinger early in the twentieth century (Uhlenbeck & Ornstein, 1930;
also see Smoluchowski, 1915; Chandrasekhar, 1943; Risken, 1996; Gardiner,
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2009; van Kampen, 2007). Schrödinger (1915) eloquently remarks on the
analytical intractability of the first passage problem. The potential value
of a tractable analytical solution of the first passage problem has led to
investigations on exact but largely indirect approaches (Siegert, 1951; Ric-
ciardi, 1977; Sampath & Srinivasan, 1977; Iyengar, 1996), and numerical
approaches (Mullowney & Iyengar, 2007; Plesser & Geisel, 1999). In the
following, some new features of the first passage problem are investigated,
including exact and asymptotic results, which may be of general interest.

3 Transformations

Features of the solution to equation 2.12 become evident when it is recast
by simple transformations of variables. In particular, we define

ε = D/γ (3.1)

and apply this and equation 2.9 to equation 2.12 to obtain

∂ρ

∂τ
= ∂

∂x

[
(x − ŝ)ρ + ε

∂ρ

∂x

]
, (3.2)

a two-parameter dimensionless equation. The initial and boundary condi-
tions equations 2.2 and 2.3 remain intact. Solutions of equation 2.12 may be
directly constructed from those of equation 3.2.

A further substitution,

x = 1 − y, (3.3)

puts equation 3.2 onto the half-infinite line 0 ≤ y ≤ ∞ with boundary con-
ditions (from equation 2.3)

ρ(0, τ ) = 0, ρ(∞, τ ) = 0 (3.4)

and initial condition

ρ(y, 0) = δ(y − 1), (3.5)

so that equation 3.2 becomes

∂ρ

∂τ
= ∂

∂y

[
(y − (1 − ŝ))ρ + ε

∂ρ

∂y

]
. (3.6)
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The substitution

y = √
εz (3.7)

and definition

β = (̂s − 1)/
√

ε (3.8)

reduce equation 3.6 to the one-parameter form,

∂ρ

∂τ
= ∂

∂z

[
(z + β)ρ + ∂ρ

∂z

]
= Lρ, (3.9)

with initial condition

ρ(z, 0) = δ(z − z∗); z∗ = 1/
√

ε. (3.10)

The boundary conditions continue to be equation 3.4. The signature of
β determines whether ŝ < 1 or ŝ > 1, which, as foreshadowed by the non-
stochastic case 2.7, leads to different consequences. An asymptotic treatment
given in the appendix brings this dichotomy into sharp focus.

The general treatment leading to equation 2.5 applies to equation 3.9,
and it is immediate that the first passage density is given by

P(τ ;β, z∗) = ∂

∂z
ρ(z, τ ;β, z∗)

∣∣
z=0 (3.11)

since ρ vanishes at z = 0.
Clearly there is an immediate map between the solutions of equation 3.9

and those of equation 3.2.

4 Background Results

The solution of the initial value problem of equation 3.9 with equation 3.10
on the fully infinite line is exactly given by

ρ̂(z, τ ;β, z∗) = (2πv(τ ))−1/2 exp(−(z+β − (z∗+β)e−τ )2)/2v(τ )), (4.1)

where

v(τ ) = 1 − exp(−2τ ). (4.2)
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This solution, known to Schrödinger (1915), has the form of a time-
dependent gaussian with variance v(τ ) and mean

z = z∗e−τ − a (τ ), (4.3)

where

a (τ ) = β(1 − e−τ ). (4.4)

Here z(τ ) is, in our present variables, the exponential relaxation time course
obtained by integrating equation 2.7. If we let τ → 0, then ρ̂ becomes the
δ-function of equation 3.10, and when τ → ∞, we see that ρ̂ approaches the
steady state

ρ̂(z,∞;β, z∗) = 1√
2π

e−(z+β)2/2. (4.5)

In the special case β = 0, equation 3.9 becomes

∂ρ

∂τ
= ∂

∂z

[
zρ + ∂ρ

∂z

]
, (4.6)

which is symmetric about z = 0, so that not only ρ̂(z, τ ; 0, z∗) but also
ρ̂(−z, τ ; 0,−z∗) = ρ̂(z, τ ; 0,−z∗) solves equation 4.6 on the full infinite line,
and their difference,

ρo(z, τ ) = ρ̂(z, τ ; 0, z∗) − ρ̂(z, τ ; 0,−z∗), (4.7)

vanishes at z = 0 and thus also is an exact solution of the sought-after
half-infinite-line first passage problem.

Continuing with the β = 0 case, we calculate the exact first passage
density from equation 3.11 to be

P(τ ) = ∂

∂z
ρo(z, τ )

∣∣
z=0 =

√
2

επ

e−τ

(1 − e−2τ )3/2 exp
(

− 1
2ε(e2τ − 1)

)
.

(4.8)

The only parametric dependence is on z∗ = √
γ /D = √

1/ε. If z∗ and τ are
back-substituted in terms of γ, s, D, and t, the result proves to be equiva-
lent to that noted by Ricciardi (1977), Sampath and Srinivasan (1977), and
Iyengar (1996) (see also Bulsara, Elston, Doering, Lowen, & Lindenberg,
1996).
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The exact result of equation 4.8, for the special case of β = 0, serves as
a check on our calculation for general β below. Also β = 0 fits well to the
ganglion cell data later shown in Figures 3 and 4.

5 Exact Analysis

While the asymptotic first passage densities developed in the appendix may
be used to analyze data, with only little additional labor, precise numerical
densities may be obtained and offer the preferred analysis method.

To implement this, we introduce the Laplace transform,

ρ̃(q , τ ) =
∫ ∞

0
e−q zρ(z, τ ) dz, (5.1)

which, applied to equation 3.9, yields

∂ρ̃

∂τ
= −q

∂ρ̃

∂q
+ (βq + q 2)ρ̃ − P(τ ) (5.2)

with the initial condition, from equation 3.10, given by

ρ̃(τ = 0) =
∫ ∞

0
e−q zδ(z − z∗) dz = e−q z∗ . (5.3)

The first-order partial differential equation, 5.2, with initial condition 5.3,
may be solved by the method of characteristics to give

ρ̃(q , τ ) = exp[−z∗qe−τ + βq (1 − e−τ ) + q 2(1 − e−2τ )/2]

−
∫ τ

0
exp[βq (1 − e−(τ−τ ′)) + q 2(1 − e−2(τ−τ ′))/2] P(τ ′)dτ ′,

(5.4)

which is in terms of the still unknown first passage density P(τ ;β, z∗). The
inverse transform of equation 5.4 may also be executed in explicit form,
which yields the relationship between ρ and P ,

ρ(z, τ )= e−(z−z∗e−τ +a (τ ))2/2v(τ )√
2πv(τ )

−
∫ τ

0
dτ ′P(τ ′)

e−(z+a (τ−τ ′))2/2v(τ−τ ′)√
2πv(τ − τ ′)

, (5.5)

where v(τ ) and a (τ ) are defined by equations 4.2 and 4.4, respectively.
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In particular, equation 5.5 holds at z = 0, where ρ vanishes and the
equation becomes a relation involving P alone, given by

e−(z∗e−τ −a (τ ))2/2v(τ )√
2πv(τ )

=
∫ τ

0
dτ ′P(τ ′)

e−a (τ−τ ′)2/2v(τ−τ ′)√
2πv(τ − τ ′)

, (5.6)

a Volterra integral equation for the first passage density P(τ ;β, z∗). It may
easily be discretized as a standard set of inhomogeneous linear equations
and numerically solved in roughly 1 second on a desktop, and in a short
time, a high-resolution catalog of such distributions may be generated. With
the substitution z∗ = 1/

√
ε, we have done this for ε and β values that cover

what appears to be a reasonable range for retinal ganglion cells.

6 Application to Data

A further time scaling is needed to match theoretical and experimental data.
Experimental interspike-interval records lead to an estimate of the exper-
imental interpulse density Pexp(t), which in turn yields the mean interval
〈t〉. For a range of inputs, 〈t〉 may cover a range of values, and for parame-
ter determination, it is convenient to put such distributions on a common
footing by rescaling time,

t̂ = t/〈t〉, (6.1)

so that the corresponding density scaling becomes

P̂exp(̂t) = 〈t〉Pexp(〈t〉̂t). (6.2)

For any P̂exp( t̂ ), the mean value of t̂ is unity, so we can now compare
the shapes of distributions free from the confounding feature of variable
duration. The theoretical distributions are likewise renormalized by

〈τ 〉 =
∫ ∞

0
τPth(τ ) dτ (6.3)

and

P̂th (̂t) = 〈τ 〉Pth(〈τ 〉̂t), (6.4)

so that experimental and theoretical distributions are now on a common
footing.

Out of the array of theoretical distributions in the catalog, we seek the
best match to data (e.g., by a least squares method). Once the parameters
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Figure 1: Three plots of P̂th (̂t; ε, β) for the indicated parameter values.

ε and β are determined on the basis of best match, we observe that since
τ = γ t, the effective rate constant γ is determined by

γ = 〈τ 〉/〈t〉. (6.5)

From this, the diffusion coefficient is given by

D = γ ε (6.6)

and the scaled membrane current by

s = γ (1 + β
√

ε), (6.7)

thus fixing the three macroscales of the experimental data.
Examination of our catalog of uniformly scaled first passage distribu-

tions, above, shows that great care must be exercised in the procedure for
deriving a least-mean-square fitting. In Figure 1 we show three calculated
P̂th (̂t; ε, β) distributions for three quite different choices of (ε, β) pairs.
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Each of these three curves is quite a good match, by eye, to a particular
experimental first passage density obtained from a retinal ganglion cell.
The three curves also, by eye, appear to be close approximations of one
another, and if weight is given to maximum height, then the two curves
with parameters that lie at opposite extremes are more similar to each other
than to the curve whose parameters lie between theirs. The figure suggests
that even an optimal fitting procedure might at best present alternatives
among which we must choose by criteria other than curve shape.

A procedure for fitting experimental first passage data to a best-matched
member in a catalog of first passage density functions should satisfy several
basic criteria (1) it should be insensitive to improbable experimental outliers,
(2) should use all the information in the experimental data, and (3) It should
not be biased toward any particular members or regions of the catalog.

A linear least-mean-square fitting procedure is natural. Criterion 1
guides us to choose, as a starting point, not the density function but rather
its cumulative probability:

C( t̂ ) =
∫ t̂

0
P(t̂′) dt̂′. (6.8)

This probability function has the range 0 ≤ C ≤ 1. In experimental data,
improbably large outlier values of t̂, regardless of their size, yield a corre-
sponding C value near unity.

If probability is used as an independent variable, say, c, then as a depen-
dent variable, t̂ is related to it through the inverse function

t̂ = C−1(c). (6.9)

In particular for a theoretical first passage distribution with parameters ε, β,
we may write

t̂ = C−1
εβ (c). (6.10)

We use equation 6.9 in the fitting of laboratory data to theory. If our data
constitute N interpulse intervals of which the j th is t̂ j , then a data-based
first passage density

Pd ( t̂ ) = 1
N

N∑
j=1

δ(̂t − t̂ j ) (6.11)
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yields all estimates, such as moments, from those data exactly. As in equa-
tion 6.8, equation 6.11 yields the cumulative probability

Cd ( t̂ ) = 1
N

N∑
j=1

∫ t̂

0
dt̂′δ(t̂′ − t̂ j ). (6.12)

In form, Cd ( t̂ ) is a set of N steps, each rising by an increment of (1/N) at a
time t̂ j . Its inverse function,

t̂ = C−1
d (c), (6.13)

in form is thus a set of uniformly spaced steps, the nth of which steps up at

c = cn = n/N (6.14)

and rises at cn to an accumulated height,

t̂ = C−1
d (n/N) = t̂n. (6.15)

Arranged in this order, according to increasing size, the t̂n are the sam-
ple’s order statistics, widely exploited in the statistical literature (David &
Nagaraja, 2003).

If the data make a large N available, then equation 6.12 produces a Cd (̂t),
which well approximates a smoothly rising curve that rises from zero to
unity.

Together, equations 6.10 and 6.15 would yield a least-mean-squared-
difference choice procedure in the form of a discrete sum over N terms.
However, the top terms of the sum, near and including t̂N, would be (as
t̂ ranges to infinity) untrustworthy outliers, not conforming to our crite-
rion 1 above. We have gone a step further and have corrected this in a
way patterned on the Kolmogorov-Smirnov statistical test (Lupton, 1993)
for whether a set of data points was drawn from a given theoretical distri-
bution. However, our test has been refined to utilize all the experimental
information (which the Kolmogorov-Smirnov test does not) and so con-
forms to our criterion 2 above.

We exploit the feature that made our challenge difficult: that all our
scaled densities are rather similar in shape. The mean of these densities,

P (̂t) = 1
N(ε, β)

∑
ε,β

P̂ (̂t; ε, β), (6.16)
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does not drastically depart in shape from any member in its sum; it is
likewise normalized, and, following equation 6.8, it has a cumulative prob-
ability

C (̂t) =
∫ t̂

0
P(t̂′) dt̂′, (6.17)

which ranges up to

C(+∞) = 1. (6.18)

This transformation of the experimental t̂ j data by equation 6.17 satisfies
criteria 1 and 2 above.

Put together equations 6.17, 6.10, and 6.15, and the residual for least-
squares optimization is

R2({̂tj }; ε, β) = 1
N

N∑
j=1

[C(C−1
εβ ( j/N)) − C(C−1

d ( j/N))]2. (6.19)

We believe that equation 6.19 meets the challenge of Figure 1 nearly as well
as possible, though we believe an expression that does slightly better and
is slightly simpler might be advanced.

7 Synthetic Data

To explore these and related issues that arise in dealing with laboratory
spike data, we apply our methodology to data generated artificially, over
which we have a degree of control. Briefly stated, we randomly draw inter-
spike intervals from a knownPth(τ ; ε, β) and apply our matching procedure
to these data. Specifically, random values are drawn from the uniform dis-
tribution over (0, 1) and inserted in equation 6.10 to obtain a sample of
scaled spike times t̂. We may then treat these spike times as order statistics
data, insert them in equation 6.19 for each pair (ε, β) in our catalog, and
choose the smallest residual R to see how nearly our procedure recovers
the (ε, β) parameter values that we put in.

In correspondence with experimental data examined in section 8, we
choose

(εo, βo) = (.19,−.01), (7.1)

the parameter values of the middle curve in Figure 1. We assemble 100
synthetic sets, each with 1100 interspike intervals. The resulting (ε, β) pairs
are shown in Figure 2. As anticipated from Figure 1, many of our random



1688 L. Sirovich and B. Knight

Figure 2: Plot of the 100 (β, ε) solutions described in the text. Inset: Blow-up of
cluster in neighborhood of equation 7.1.

drawings are better fit by distributions that have a slightly different shape
but fairly different parameter values. We first focus on the region of the
dark circle, which contains the input parameter values of equation 7.1. The
exact parameter values are recovered for 13 of our 100 randomly drawn
interspike-interval sets. The inset to the figure expands the vertical scale of
that region, where ε = .19 occurs 17 times and β = −.01 occurs 16 times,
which makes each of these correct values the modal value for the 100 points.
With regard to a standard of accuracy reasonable for interpreting biology,
all 33 members of the tight cluster within the inset are sufficiently accurate
recoveries of the input parameters.

Equation 6.19 defines a Euclidean distance between members of the
function space of first passage densities. The (ε, β) parameterization of
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the densities P̂ (̂t; ε, β) defines a two-dimensional surface in that Euclidean
space. Both the variation of distributions in Figure 1 and Figure 2’s sepa-
ration of nearby points, in Euclidean space, into separated subsets on the
two-dimensional (ε, β) surface, suggest that the (ε, β) surface is folded back
on itself so that parametrically distinct two-dimensional patches are nearby
in distance. A range of parameter values consequently yields very similar
interspike distributions.

8 Application to Experimental Data

Next we apply the same methodology to a data set selected from a very large
database accumulated in our laboratory (Casti et al., 2011; Knight, 2008).
The neurons were retinal ganglion cells recorded in anesthetized cats, which
were responding to a time-varying naturalistic stimulus (van Hateren, 1997;
Reinagel & Reid, 2000). The spike times in response to 128 repetitions of
this stimulus were recorded. The means for reducing the resulting data, to
a form useful with the methods above, merits brief discussion.

If the spike times in N statistically independent repeat trials (where
N = 128 in our case) are merged to a single time record then in this merged
record, every spike time is preceded, and also is followed, by roughly N
uncorrelated spike times. Consequently, if N is large, the merged record
may be conveniently viewed as a sample of an inhomogeneous Poisson
point process. An inhomogeneous Poisson process is fully characterized by
a rate function over time, which we may call

Nr (t). (8.1)

Here the factor N is included to put r (t) on a single-trial basis. With large
N, the merged sample is able to yield a good estimate of r (t), essentially
by maximum likelihood estimation. With r (t) on hand, we can go back to
our 128 individual trials and to each spike time record attach a value of
r (t) and also a value of ṙ (t), its time derivative. Each single-trial interspike
interval from the 128 trials therefore can be ordered by the size of r or by
how rapidly r (t) is changing.

The function r (t) changes smoothly with t and is of bounded variation.
These two properties together endow it with the feature that it spends much
of its time near its local extrema, where r (t) is changing only gradually.
From our actual ordered list of interspike intervals, we observe that for the
middle one-third, r (t) is changing slowly enough to be considered steady.
In that smaller set, the values of r (t) smoothly span an order of magnitude.
We have reordered that set in the order of rising r (t) and have divided it
into seven numerically equal subsets. Each subset well approximates a set
of interspike intervals obtained in steady conditions at a particular mean
firing rate and is appropriate for the analysis that we applied above to the
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Table 1: Parameter Determinations for the Seven Quasi-Steady Firing Rates.

Line Rate (Hz) ε β s/γ γ Corrected γ

1 7.2387 0.19 −0.68 0.7036 0.0227 0.0146
2 19.845 0.2 −0.06 0.9732 0.0313 0.0309
3 32.18 0.21 −0.01 0.9954 0.0487 0.0501
4 45.7041 0.19 −0.01 0.9956 0.0757 0.0757
5 59.2168 0.19 −0.01 0.9956 0.0978 0.0978
6 75.1841 0.45 1.58 2.0599 0.0437 0.1196
7 104.8552 0.34 1.35 1.7872 0.0663 0.1499

pseudodata. Over the seven sets, mean firing rate ranges from 7.2387 Hz
to 104.8552 Hz. The results of the analysis are given in Table 1. Each of the
seven cases contained (close to) 1100 interspike intervals, which accounts
for this choice in dealing with the pseudodata in the previous section.

From Table 1 we observe that the mode for ε is .19, and for β it is −.01,
explaining the values chosen in the previous section. Inspection of the table
shows several large parameter jumps of the sort we encountered in the
previous section. If we compare the scaled density P̂ (̂t; ε, β) for row 6, on
the basis of (β, ε) = (1.58, .45), with that of row 5 with (βo, εo) = (−.01, .19),
we obtain a near identity of the two, in the same spirit as Figure 1. The
value of γ in the former case is at odds with the natural continuity that is
expected. The last column calculates γ on the premise that P (̂t;βo , εo) is
the correct fit. We next consider the issue of parameter fitting from another
perspective.

8.1 Finite Jump Model. We concluded the paragraph that introduced
Figure 1, in section 6, with the suggestion that parameter choice might
require data beyond those that determine curve shape. To do that, we
now generalize to a finite-jump model for which there exist further data.
As we pointed out in section 2, the dynamics of retinal ganglion cell is a
consequence of fast synaptic dynamics and is formulated in terms of the
membrane voltage alone. Within this set of models is one that includes the
possibility of finite jumps in the membrane voltage (Stein, 1965; Wilbur &
Rinzel, 1982; Omurtag et al., 2000; Sirovich, Knight, & Omurtag, 2000.)

In the notation of equation 2.1, this model takes on the form

J = −γ x − s
h

{ρ(x − h) − ρ(x)} − κ
∂ρ

∂x
, (8.2)

where the first term is the usual leakage, and the second is the flux due
to finite membrane voltage jumps, h, that arrive at a rate s/h, where s is
the current. Also included here is a diffusion term with diffusivity κ to
account for possible background noise not necessarily associated with the
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synaptic arrival rate. If equation 8.2 is substituted in equation 2.1 and the
transformation 2.9 is applied, we obtain

∂

∂τ
ρ = ∂

∂x
(xρ) + ŝ

h
{ρ(x − h) − ρ(x)} + κ

γ

∂2ρ

∂x2 . (8.3)

Note that 1/h may be regarded as the approximate number of jumps needed
to reach the spiking threshold. Freed (2005) has carefully analyzed quantal
arrivals for retinal ganglion cells in cat, and according to his study, an
average of 10 jumps is needed for spike firing; this suggests that h ≈ .1. By
customary standards, this lies at the borderline of h being small.

The Ornstein-Uhlenbeck equation may be derived from equation 8.3
under the hypothesis that h is small. A simple expansion of ρ(x − h) through
order h2 yields

∂ρ

∂τ
= ∂

∂x

{
(x − ŝ)ρ +

(
ŝh
2

+ κ

γ

)
∂ρ

∂x

}
, (8.4)

which is of the form 3.2.
It therefore follows that ε, which by equation 3.2 is the coefficient of

∂ρ/∂x in the braces, may be written (using equation 2.8) as

ε = ŝ
(

h
2

+ κ

s

)
. (8.5)

For lines 2 to 5 of Table 1, it may be reasonably supposed that ŝ ≈ 1 and
ε ≈ .19. If these and Freed’s estimate of h are substituted into equation 8.5,
we obtain

κ = .14s. (8.6)

If this is back-substituted into equation 8.5, we obtain

ε = ŝ
(

h
2

+ .14
)

. (8.7)

With this result, which relates h to ε, we may now go back to the suspect
lines 1, 6, and 7, from which the values of ε give h values of .26, .16, and 1,
an overall lack of agreement with Freed’s measurements

From another perspective, if we regard the (ε, β) values of Table 1 on the
plot of Figure 2, rows 1, 6, and 7 as just calculated correspond to outlier
branches, while rows 2 to 5 are in the close neighborhood of the correct
point. This suggests that we adjust lines 1, 6, and 7 in accordance with
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P (̂t; 0,−.01, .19). If this is done, we get the corrected values of γ shown in
the last column of the table.

9 A Model Ganglion Cell

Inspection of Table 1 suggests that for lines 2 to 5, β ≈ 0 would be a rea-
sonable approximation. In addition, the discussion in the previous section
strongly suggests that lines 1, 6 and 7 represent determinations from an
unsuitable branch, in the sense of Figure 2, and might reasonably be fit by
β = 0. This in turn suggests the theoretically exact case of section 4: that
β = 0 is respected throughout the time variation.

Within this framework, the fit of data to our model in Table 1 suggests
that the membrane “constant" varies in time

γ = γ (t), (9.1)

in such a manner that

ŝ = s(t)/γ (t) = 1. (9.2)

Further, this suggests that its neuronal output faithfully follows the stimulus
(see Knight, 1972, for an early discussion of such issues). Thus, it appears
that we might reasonably collapse the whole time-dependent situation to a
compact approximate model by substituting equation 9.2 into equation 3.2,
assuming ε is constant as indicated by lines 2 to 5 of Table 1:

∂

∂τ
ρ = ∂

∂x

[
(x − 1)ρ + ε

∂ρ

∂x

]
; (9.3)

and, as equation 9.2 gives γ (t) = s(t), equation 2.9 generalizes in a natural
way to

τ =
∫ t

s(t′) dt′. (9.4)

We refer to this as the faithful copy model with β = 0. Under conditions
9.1 and 9.2, the first passage density is explicitly given by equation 4.8, a
one-parameter family in ε.

As a test of whether this has some generality, we consider the classic
results of Troy and Robson (1992), which they kindly furnished to us in his-
togram form. The fit of the faithful copy model interspike interval density,
equation 9.3, to two of their histograms is shown in Figure 3.
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Figure 3: Comparison of β = 0 probability densities with the results of
Troy and Robson (1992).

10 Discussion

We have presented a method for extracting, from neuron spike train data
sets, three parameters that characterize a simplified neuron model. These
parameters characterize the neuron’s momentary synaptic input current,
its ohemic rate constant, and its level of intracellular noise. The values of
these parameters are determined from the shape of a interspike-interval
histogram by means of a three-parameter fit. Study of the model itself, and
also results of its application to laboratory data, leads to two nonobvious
findings that may be of some physiological interest.

The first finding is that actual neurons measured in the laboratory have
chosen a region of physiological parameter space where the firing statistics
are remarkably insensitive to the choice of these parameters. In Figure 1,
where a parameter has been removed by normalization in terms of firing
rate, we see that substantial changes in the two remaining parameters have
a very slight effect on the interspike-interval histogram. In Figure 2, we
show the converse: from a theoretical infinite-sample limit histogram with
parameters chosen to fit a real cell, we have made a 100-member set of
1100-draw Monte Carlo samples, and we have reevaluated our parameters
for each of the 100 resulting histograms. As the widely dispersed points in
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Figure 2 testify, a wide variety of parameter pairs emerges, from those very
similar histograms.

Interacting neurons influence one another only through the occurrence
times of their spikes. Consequently our observation above leads us to sus-
pect that at least in this application, nature has chosen an operating point
where sketchy construction information, leading to a dispersal of param-
eters among the resulting neuron population, will not noticeably degrade
the performance of the network.

In observing this, we follow the early suggestion of Huggins and Liek-
lider (1951) (expanded by Ratliff, 1965) who enunciate the principle of
sloppy workmanship, which suggests that nervous tissue was created by
an inventor brilliant enough to produce a blueprint that accounted for im-
plementation by a sloppy workman. The suggestion was that there cannot
be sufficient room in the genome to furnish detailed design for the entire ner-
vous system. What we note here resembles the observation of Marder and
colleagues (Prinz, Bucher, & Marder, 2004; Marder & Goaillard, 2006) that
“disparate parameterizations" can lead to “virtually indistinguishable activ-
ity.” A similar observation appears in Sarkar and Sobie (2010) for Hodgkin-
Huxley–like spiking activity. Discussion in these references suggests that
use of this principle may be advantageous for survival.

The second potentially interesting nonobvious finding comes from the
time-dependent data. Here we find that for our simplified model, two pa-
rameters with the physical dimension of rate ((time)−1), namely, membrane
conductivity and diffusion coefficient, in fact are not constants but rather
change with a scaling close to that of the cell’s rate of firing. This led us
to propose the very simple time-dependent model presented in equations
9.3 and 9.4, which in Figure 3 gave a good time-independent fit to two
of Troy and Robson’s cells. In Figure 4, we show that this model also fits
reasonably well to the data of our cell discussed above. Conformance to
the model would demand that in this format, the cell produce the same
universal histogram for all of its different levels of firing rate, and indeed
the several laboratory histograms superimpose fairly well. However, the
theoretical histogram, when converted back to laboratory time at the var-
ious firing rates, gives the well-dispersed family of histograms shown in
Figure 5. These naturally fit well to the individual data histograms of Figure
4 when those are similarly recast in laboratory time. For the model, these
changes with firing rate in Figure 5 follow naturally from the firing rate
dependence of leakage rate and of diffusion.

The wide range of values for the membrane constant that has been noted
and questioned in the literature (Fohlmeister & Miller, 1997; Freed, 2005)
may be due to the tracking feature of γ that appears in our analysis.

The simple model of equations 9.3 and 9.4 is an example of a broad
class of possible neuron designs that might carry high survival value.
Equation 9.3, which has a current sink at x = 1 but no current source, is
addressed to the first passage problem. Adding a current source, equal to
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Figure 4: Comparison of the seven cases described in Table 1 with the proba-
bility density function P(t̂ : 0, .19).

the sink, at x = 0, gives us the full Fokker-Planck equation for the long-time
evolution of the neuron ensemble. There is no explicit time dependence in
the modified equation 9.3, and it is easily shown that its solution evolves to
a steady state that subsequently gives a firing rate, in the variable τ , which
is constant (Sirovich et al., 2000). The deterministic neuron (2.10) does not
fire in finite time under condition (9.2) but in the presence of noise it does
and the firing rate is

Jo = sκ(ε), (10.1)

where the coefficient κ(ε) may be explicitly calculated (Sirovich et al., 2000).
Thus it may be said that noise takes the membrane potential above the
firing threshold, and high current amplifies the process.

Equation 9.4 now tells us that in laboratory time, t, the neuron’s firing
rate, is proportional to the synaptic input current s(t). That is, the pop-
ulation’s time-dependent momentary firing rate is a faithful copy of its
synaptic input current. The input-output relation of a neuron population,
which has the faithful copy property, thus manages to avoid the typical
input-amplitude-dependent strong nonlinearities in output that commonly
arise in models of neuron populations based on broadly Hodgkin-Huxley-
type neurons. The critical feature of a faithful-copy neuron is that following
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Figure 5: Probability density functions for the middle five cases in dimensional
terms.

a change in synaptic input (perhaps an abrupt large change), the popu-
lation’s density distribution over its state-space does not need to seek a
different new equilibrium. The fulfillment of the requirements for achiev-
ing this is easily understood in equations 9.3 and 9.4. The same way of
fulfilling the requirements generalizes naturally to more elaborate realistic
neuron models.

As a summary statement the present investigation suggests that noisiness
and sloppiness are essential in the design of nervous tissue.

Appendix: Eigentheory, Limits, and Asymptotics

The Ornstein-Uhlenbeck eigentheory, which follows from equations 3.9 and
3.4, is characterized by

Lφk = ∂

∂z

[
(z + β)φk + ∂φk

∂z

]
= λkφk

(A.1)
φk(0) =φk(∞) = 0.

An immediate result is that

λk = λk(β), (A.2)
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thus dropping the analysis down to a one-parameter family, since the eigen-
theory does not depend on the initial data in equation 3.10, the only place
z∗ occurs. If

δ(z − z∗) =
∑

n

an(zn)φn(z), (A.3)

then the first passage solution is given by

ρ(z, τ ) =
∑

n

anφn(z)eλnτ . (A.4)

We observe that for the full infinite line,

ω(β) = e−(z+β)2/2 (A.5)

satisfies L of equation A.1 with λ = 0, and vanishes for z → ±∞. Then, as
may be verified directly,

(λk, φk) =
(
−k,

∂k

∂zk
ω(β)

)
= (−k, ω(β)Hk(z + β)); k = 0, 1, 2, . . . (A.6)

where Hk is the kth Hermite polynomial (Abramowitz & Stegun, 1970).
From equation A.6 it follows that if βk is the largest finite positive zero

of Hk , then

φk(z) = ω(βn)Hk(z + βn) (A.7)

is the principal eigenfunction corresponding to λ = −k of the semi-infinite
problem A.1, as it satisfies that equation and has no zero crossing for z in
ε(0,∞).

The corresponding eigenvalues are negative integers. Their exactly cal-
culated values are shown in Figure 6 as circles that fall on the continuous
curve λ(β), which is easily computed from the matrix discretization of equa-
tion A.1. A principal eigenvalue provides an asymptotic estimate of firing
rate.

In the special case of β = 0, it is clear from equation A.6 that the complete
set of eigenfunctions is given by the set φ2k+1, k = 0, 1, ... corresponding to
λ2k+1 = −(2k + 1). (See Risken, 1996; Gardiner, 2009; van Kampen, 2007.)

In terms of the variables (x, τ ), we may write the full infinite domain
solution, equation 4.1, as

ρ̂(x, τ ;β) = exp[−(x − ŝ(1 − e−τ ))2/2εv(τ )]
[2πεv(τ )]1/2 , (A.8)
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Figure 6: Principal eigenvalue numerically computed from equation A.1. Cir-
cles represent the exact considerations.

where v(τ ) is given by equation 4.2. In such terms, the exact first passage
solution for β = 0, equation 4.7, can be put into the suggestive form

ρo(x, τ ) = ρ̂(x, τ ; 0)
(
1 − eψ(x,τ )/ε), (A.9)

where

ψ(x, τ ) = −2e−τ (1 − x)
(1 − e−2τ )

. (A.10)

For β = 0, if we write

ρ(x, τ ) = ρ̂(x, τ ;β)g(x, τ ) (A.11)

and substitute into equation 3.2, we obtain

gτ = cosh τ

sinh τ

{
− x + 2ŝ

sinh2
τ/2

cosh τ

}
gx + εgxx = Lg. (A.12)
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For τ small, this becomes

Lg ∼ −xgx/τ + gxx, (A.13)

and in this limit, the solution of equation A.12 is

g = 1 − e−(1−x)/ετ , (A.14)

which is consistent with equation A.9 and therefore equation A.10 in this
case is

ρ ∼ ρ̂
(
x, τ ;β)(1 − e−(1−x)/ετ ) (A.15)

The small time solution for ŝ � 1 was discussed by Gerstein and Mandel-
brot (1964). Equation A.14 exhibits a singular character in the limit x → 1,
τ → 0; however, this is correctly obtained if the first limit is taken as x → 1−,
where 1− lies to the left of 1.

Next we observe that for τ large, equation A.12 takes the form

gτ = (−x + ŝ)gx + εgxx, (A.16)

which for small ε may be treated by boundary layer theory. Approximate
solutions to equation A.16 can be conveniently treated in the two regimes
noted at the close of section 3.

A.1 Case 1: ŝ≤ 1. Based on equation 4.8, we might write the asymptotic
uniform form of the interspike interval distribution as

P = ρ̂(1, τ ;β)
2Ceλτ

(1 − e−2Cτ )
, (A.17)

where λ is the principal eigenvalue for the given value of β. It is easily
seen that this tends to the valid limit for τ ↓ 0 and τ ↑ ∞, the basis of
considering this form. The constant C is determined by the fact that P is a
pdf normalized to unity. For ŝ = 1, C = 1, and we recover the exact result,
equation A.9, in which case, λ = −1. As a consequence, we can also write

ρ ≈ ρ̂(x, τ ;β)
(

1 − exp
[

− 2Ceλτ (1 − x)
(1 − e−2Cτ )ε

])
, (A.18)

which for ŝ = 1 is exact, A.9.



1700 L. Sirovich and B. Knight

A.2 Case 2: ŝ>1. From the eigentheory of section 5, equation A.4 sug-
gests that for τ large,

ρ ∼ eλτφ, (A.19)

where λ is the principal eigenvalue of L, equation 3.9, and φ the principal
eigenfunction so that

(λ − 1)φ = (β + z)
∂φ

∂z
+ ∂2φ

∂z2 (A.20)

subject to the boundary conditions

φ(0) = φ(∞) = 0. (A.21)

On formal grounds, if ε is small, then β is large in the present case, and we
expect a boundary layer at z = 0 since convection is to the left, implying a
buildup occurring near the origin. This suggests a boundary layer of O(1/β)
at z = 0. In the neighborhood of the origin, the boundary layer solution is
easily obtained as

φ ∼ A
(
1 − e−βz), (A.22)

with A to be determined from the outer solution, where z is out of the
boundary layer. This is given by

φ ∼ (β + z)λ−1, (A.23)

which, since λ < 0, vanishes as z ↑ ∞, as required by equation A.21.
We go directly to a form that is uniformly valid over the x-interval. In

terms of the original variables, when τ ↑ ∞, this is given by

ρ ∼ eλτ
(
1 − e−(ŝ−1)(1−x)/ε)(ŝ − x)λ−1. (A.24)

In this case, the interspike interval distribution function is

P(τ ) ∼ −1
ε

∂

∂x
ρ

∣∣∣∣
x=1

= eλτ (̂s − 1)λ, (A.25)

whereas from equation A.15 for τ ↓ 0,

P(τ ) ∼ exp[−1/4ετ ]

τ 3/2
√

4πε
, (A.26)
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equations A.25 and A.26 can be combined to give

P(τ ) ≈ 2Ceλτ

1 − e−2Cτ
· 1√

4πετ (e1/4ετ − 1) + (s − 1)−λ
, (A.27)

where, as earlier, C is determined by requiring that

∫ ∞

0
P(τ ) dτ = 1. (A.28)

Unlike the previous case, we do not recover the exact result for ŝ = 1, since
β, being large, underlies the asymptotics.

We mention in passing that a straightforward perturbation analysis of
the eigentheory of section 5 furnishes a description of β ≈ 0.
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